International Journal of Innovative
Computing, Information and Control ICIC International (©)2013 ISSN 1349-4198
Volume 9, Number 3, March 2013 pp. 1113-1126

DYNAMIC STOCHASTIC EARLY DISCOVERY: A NEW
CONGESTION CONTROL TECHNIQUE TO IMPROVE
NETWORKS PERFORMANCE

MAHMOUD BAKLIzI', HUSSEIN ABDEL-JABER?, MOSLEH M. ABU-ALHAJ!
NIBRAS ABDULLAH!, SURESWARAN RAMADASS! AND AMMAR ALMOMANI!

I'National Advanced IPv6 Center of Excellence
Universiti Sains Malaysia
Penang 11800, Malaysia
{ mbaklizi; mosleh; abdullahfaqera; sures; ammarali }@nav6.org

2Department of Computer Information and Network Systems
The World Islamic Sciences and Education University
Amman, Jordan
hussein.abdeljaber@wise.edu.jo

Received January 2012; revised May 2012

ABSTRACT. The present paper proposes the Dynamic Gentle Random FEarly Detection
(DGRED) algorithm for early stage congestion detection at the router buffer. Generally,
the proposed DGRED algorithm depends on the stability of the average queue length at
a specific level between allocated minimum and mazimum threshold values, with the aim
to improve the network performance. The DGRED algorithm is simulated and compared
with the most known Active Queue Management Early Detection (RED) algorithm and
two of its variants, namely, Gentle RED and Adaptive GRED. This comparison was con-
ducted based on different performance measures, such as mean queue length, throughput,
average quewing delay, packet loss, and dropping probability for packets. The comparison
aimed to identify the algorithm that offers better performance measurement results under
either non-congestion or congestion situation at the router buffers. The acquired results
show that the proposed algorithm contributes in providing lesser queue length, delayed
queuing, and packet loss probability compared with the existing algorithms when high
packet arrival probability appears, that is, (> 0.63). Furthermore, DGRED generates
adequate throughput when the packet arrival probability value is high.

Keywords: Congestion control, Gentle random early detection (GRED), Adaptive
GRED, Random early detection (RED), Performance evaluation, Simulation

1. Introduction. The performance of computer networks and Internet technologies are
constantly being questioned because of their rapid growth. Congestion is one of the major
problems that challenge network performance [1,2]. Congestion occurs when buffers of the
network routers can no longer handle the incoming packets, as the amount of incoming
packets exceeds the available network resources [3]. The drawbacks of congestions are as
follows. Congestion plays a major role in worsening network performance by increasing the
packet dropping probability (D,) and increasing packet loss probability (). In addition,
congestion may lead to an increase in the mean queue length (mgl) and the mean waiting
time (D) of packets, which will finally degrade the amount of packets passing through the
buffer of the routers, namely, the throughput (7°) [4].

Congestion is associated with the status of the average queue length (agl), which in turn
affects network performance. When aql value increases, T' value likewise increases. At the
same time, D and P, increase, and the router buffer overflows. By contrast, when the aql

1113

1114 M. BAKLIZI, H. ABDEL-JABER, M. M. ABU-ALHAJ ET AL.

value relatively decreases, D and T likewise decrease. Network efficiency is decreased in
both cases. Thus, congestion control is required to maintain a stable aql value, optimize
the utilization of network resources, and enhance its performance.

Enormous congestion control algorithms, such as Random Early Detection (RED) [5],
Gentle RED (GRED) [6], and Adaptive Gentle RED (AGRED) [7], have been proposed.
However, these algorithms have failed to dynamically adjust to provide the best solution
based on the status of the agl. Generally, the disadvantages of the existing congestion
control algorithm can be summarized as follows. The existing algorithms use static prob-
ability for packet dropping, which leads to large drops in the number of packets when
the probability value is high and bursty traffic is present. With bursty traffic, a heavy
congestion signal is given out, which then leads to large packet drops. Conversely, net-
work performance becomes degraded when the probability of packet dropping is set too
low. Specifically, D,, P, mql, and D will increase, and 7" will decrease. Consequently,
a dynamic mechanism is required to implement packet dropping based on the conges-
tion status. This paper aims to propose a new algorithm called the Dynamic GRED
(DGRED) to address the aforementioned disadvantages and to improve network per-
formance. Improving network performance involves alleviating P, and obtaining more
satisfactory performance measurement results with reference to mgql and D when heavy
congestion occurs at the router buffers of networks.

The rest of the paper is organized as follows. Section 2 presents previous related work.
The proposed algorithm is discussed in Section 3. Section 4 presents the simulation
information. The results of the developed simulation are discussed in Section 5. Section
6 presents the applications of the DGRED algorithm. Finally, conclusions are stated in
Section 7.

2. Related Works. Several studies on controlling congestion and handling the afore-
mentioned problems have been conducted in the past [8-13]. The Drop Tail (DT) method
[14,15] aims to control congestion using a fixed router buffer size to optimize queuing
delay. The DT method sets the size of the router buffers to a maximum while dropping
all incoming packets when the router buffers overflow. The drawback of this method is
the possibility of a rise in high packet queuing delay. DT may also depend on setting the
router buffers to a minimum size, which decreases the throughput 7. The DT method
has several other drawbacks, such as, increase in packet loss rate, saturation of the queue
router buffer [4], and global synchronization [5].

Active Queue Management (AQM) is a set of methods proposed to overcome the limi-
tations of the DT method discussed earlier. Unlike the DT method, which starts dropping
packets only after the router buffers overflow, AQM methods usually start dropping pack-
ets in the early stages. Consequently, early congestion control allows sources to decrease
their transmission rates early, right before the router buffers are completely occupied.
AQM controls the congestion in the router’s buffer, improves the throughput, decreases
packet queuing delay, decreases packet loss rate, and keeps the mql at a minimum. AQM
emerges with an adaptable utilization buffer size. Packet droppings are initiated based
on a calculated threshold value to prevent buffer overflow. AQM first calculates the value
of aql then compares it with the given threshold. When the aql value is greater than
the threshold value, all packets arriving at the buffer are dropped with the probability of
preventing router buffer overflow [16-18].

Enormous algorithms for congestion control, such as RED [5], GRED [6], AGRED [7],
VIATIME-DELAY AFFINE TAKAGIUGENO FUZZY MODELS [19] and other time-
discrete queue analytical models [5-8], have been built based on AQM.

DYNAMIC STOCHASTIC EARLY DISCOVERY 1115

Drops every arriving A Marking/Dropping packets randomly ANO packets dropped
packet

—y eeodececccvescecevsves | P3| Prz] P

Packet arrival

Packet departure

Vma xthreshold minthreshold v

bPackets queued in the router buffer (FCFS) ‘

FIGURE 1. The single router buffer for RED

RED is one of the most significant algorithms for congestion control [5]. RED manages
the congestion before the router buffer overflows using the computed agl and two calcu-
lated thresholds values, namely, minthreshold and maxthreshold. Generally, RED detects
the congestion by initially computing the aql and comparing it with the minthreshold and
mazxthreshold. Congestion does not occur when aql is smaller than the minthreshold. The
routers, therefore, do not drop any packet. If the aql is between the two thresholds, the
arriving packet is dropped and the probability is calculated as D, to alleviate congestion.
Finally, when the aql is above the mazthreshold, all arriving packets are dropped to a D,
value equal to one (Figure 1).

Generally, RED’s drawback is the varying aql computed according to the congestion
status. Hence, if the congestion status is light, the agl value will be close to the minthresh-
old. If the congestion status is severe, the aql value will be close to the mazthreshold; thus,
the packet D, will increase, and the buffer will overflow. Another drawback is the reliance
of the computed aql on the traffic load (number of connections). If the traffic load is high,
the aql value may exceed the maxzthreshold. In such a case, network performance in many
aspects will worsen. Therefore, the router buffer will drop every arriving packet. Thus, the
RED parameters must be set at particular values to ensure satisfactory performance. If
the traffic load is low, the agl will normally be lesser than the minthreshold. Consequently,
no arriving packet is dropped. Overall, RED cannot stabilize its aql value between the
minthreshold and mazxthreshold when the traffic load changes suddenly (i.e., bursty traffic)
[20,21].

Floyd [6] proposed the GRED to overcome some of the limitations in RED [6,21,22].
Similar to RED, the GRED algorithm mainly aims to manage and control the congestion
networks at the early stage. GRED implements its algorithm by stabilizing the aql at
a certain level. GRED employs a similar approach used by RED in calculating the D,,.
However, GRED utilizes three thresholds, namely, minimum, maximum, and doublemax-
imum. Generally, GRED reacts with the arriving packets based on one of the following
scenarios (Figure 2):

1) When the aql at the router is below the minthreshold, no packets are dropped.

2) If the aql is between the minthreshold and mazthreshold, the router will drop the
arriving packets randomly, similar to RED.

3) If the aql is between the maxthreshold and the doublemaxthreshold, the packets are
dropped randomly with higher probability compared with the previous case.

1116 M. BAKLIZI, H. ABDEL-JABER, M. M. ABU-ALHAJ ET AL.

Dropping padkcets probabilistically

Drops every arriving 4k A A\ No padcets dropped
padket

D—) [Pktn] se edeesesecccschescccece \Pkt3||Pkt2||Pkt1\—)|_|—>

Packet arrival

Packet departure

Doublemaxthreshoid maxthresiiold minfreshiold

>E1Lkets quened in the router buffer(Ft]F‘S)‘

F1GURE 2. The single router buffer for GRED and AGRED

4) 1If the agl is equal or greater than the doublemaxthreshold, the GRED router drops the
arriving packets with D, equal to one (i.e., arriving packets are dropped).

Unfortunately, GRED has some limitations. First, GRED deals with several threshold
values. Second, GRED must set its parameters to specific values to obtain satisfactory
performance (i.e., parameterization). Third, when the agl is less than the minthreshold
and heavy congestion occurs, the aql will take time to adjust, during which the router
buffer will likely overflow. Thus, no packets are dropped despite the overflowing GRED
router buffer.

The AGRED algorithm is proposed to improve the performance of GRED during router
buffer congestion (i.e., deriving better quality results with reference to the mql, D, and
P, performance measures). In addition, the AGRED algorithm aims to enhance the
parameter settings (e.g., the maxthreshold and the maximum value of D;,;, which is the
Dyax of GRED). The calculation of the agl in AGRED is also similar to that in GRED.
Therefore, AGRED decides on packet dropping in a manner similar to that in GRED [7]
(Figure 2).

The main difference between the GRED and the AGRED lies in the calculation of the
Dyir value (the initial packet D,). In AGRED, the D;,;; value varies between the D,
values to 0.5, as long as the aql value is between the mazthreshold and doublemaxzthreshold.
In GRED, when the aql value is between the maxthreshold and the doublemaxthreshold,
the calculated D;,;; value of GRED varies from the D, value to 1.0. In summary, all
the aforementioned related methods fail to implement a congestion control that can deal
with all congestion cases encountered by the network resources, the performance of which
is consequently affected.

3. The Proposed DGRED. The proposed DGRED is an extension of GRED. DGRED
employs a dynamic maxthreshold and doublemaxthreshold to control the congestion in the
router buffer at the early stage before it overflows. The aim of the DGRED algorithm is
to stabilize the aql using a new defined value called Target agl(Tyoy). Tuq is calculated
between the minthreshold and mazthreshold (Figure 3). Another aim for the proposed
DGRED is providing better performance results than other AQM algorithms such as
RED and two of its variants like GRED and AGRED. These better performance results
are represented by the results of mean queue length, average queueing delay and packet
loss probability when heavy congestion has occurred.

DGRED also updates the maaxthreshold and doublemaxzthreshold parameters at the
router buffer to enhance network performance. DGRED uses the GRED algorithm’s

DYNAMIC STOCHASTIC EARLY DISCOVERY 1117

Dropping padcets probabilistically

Drops every arriving

No packets dropped
packet

- -

Paclet departure

]

Packet arrival

Doublemaxthreshold masdireshotd 1M minthrestiold
Packets queued in the router buffer(FCFS)

F1GURE 3. The single router buffer for proposed dynamic GRED

FI1GURE 4. The proposed dynamic gentle random detection

policy in dropping packets with probability when the aql is between the minthreshold and
doublemaxthreshold.

3.1. DGRED process. The DGRED’s processing stages are illustrated in Figure 4. The
parameter setting initialization step (Step 1) is triggered as the packet arrives at the router
buffer. DGRED initiates the minthreshold and maxthreshold to the same values as those
in the RED and GRED algorithms [5,6]. Furthermore, the doublemazthreshold is set to
the same value as that in GRED [6]. The agl is initialized to 0.0 and the counter (C) is
set to —1. The parameter C' represents the number of packets that have arrived at the
router buffer thus far and have not been dropped since the last packet was dropped. The
value of the aqgl is initialized in this stage as well.

The DGRED algorithm then calculates the Target Value (T,q) (Step 2) using Equation
(1). The proposed DGRED algorithm uses a calculated T, value that points to a specific
position in the router buffer. The T, value is introduced to stabilize the agl between the
minthreshold and maxthreshold fort the detection of congestion at the early stage. The
indicated position by T,, identifies the incipient congestion situation. Generally, Tgq is

1118 M. BAKLIZI, H. ABDEL-JABER, M. M. ABU-ALHAJ ET AL.

Calculate ag/

If (aql at
router buffer =

empty)

Yes

h 4
aql= aql(l- gw)™n

aql= aql(1- gqw) +
qw ¥ _instantaneous

I Output agl/ value |

FiGURE 5. Calculation agl

calculated using Equation (1) as follows:

manthreshold + doublemaxthreshold (1)
#threshold

where # thresholds is the number of thresholds used by the algorithm (minthreshold,
mazthreshold, doublemaxthreshold). Equation (1) is derived to obtain the Tj, between
the minthreshold and mazthreshold position values. GRED recommends that the setting
value of the maxthreshold is at least double that of the minthreshold [6]. Therefore,
any setting value of the initialized minthreshold and maxthreshold always makes use of
Equation (1) to provide a 1,4 value between the minthreshold and mazthreshold values.
This result helps in stabilizing the agl around the 7, value between the minthreshold and
maxthreshold positions. This method prevents build up in the router buffers, resulting in
fewer dropped packets.

DGRED then (Step 3) examines the queue status and calculates the value of agl based
on whether the router buffer is empty or not, as illustrated in Figure 5. Accordingly, if
the queue is empty, the value of the aql is calculated based on the current_time-idle_time
(n). The agql is calculated using Equation (2). On the other hand, if the queue at the
router buffer is not empty, the agl is calculated using Equation (3).

agl = aql x (1 — quw)" (2)

aql = aql x (1 — qw) + quw X g_instantaneous (3)

In the following step (Step 4), DGRED compares the calculated agl value with the T,
value and subsequently updates maxthreshold and doublemaxthreshold positions to improve
network performance (Figure 6). The values of both maxthreshold and doublemaxthreshold
are updated with reference to the agl value. The increment and decrement in these

thresholds are calculated using Equation (4). Notably, Equation (4) is performed only
before the maxthreshold and doublemaxthershold values are updated.

1
4
number of threshold (4)
The maxthreshold and doublemaxthreshold values are increased and decreased by Equa-

tions (5) to (7) to manage congestion at the router buffers. This management is done
by increasing and decreasing maxthreshold and doublemazthreshold values around the T4

(Doublemaxthreshold — minthreshold) x

DYNAMIC STOCHASTIC EARLY DISCOVERY 1119

Updating Maxthershold and doublemaxthershold

v
Initializing
the thresholds

1f(aql == Taql && Yes
Max T ==3*Min T

L& aql==Min T

A 4
Equation 5 and
No . Equation 6

h 4
Initializing .
the thresholds Equation 7
Min T= minthershold Output of Updating

Max T= maxthershold
Dmax_ T= doublemaxthershold

FIGURE 6. Maxthreshold and doublemaxthreshold updating process

level. Therefore, the aql value stabilizes at the T, level. This stabilization can prevent
the filling up the router buffers. As a result, fewer packets are dropped. Furthermore, the
calculated maxthreshold and doublemaxthreshold values provided by Equations (5) to (7)
can increase and decrease the aql value around the T, level in a slow mode. Therefore,
Equations (5) to (7) are derived.

As such, if the aql is smaller than the minthreshold value, no congestion occurs and the
minthreshold and maxthreshold values will not change [6]. However, if the agl is larger
than the minthreshold value and less than or equal to the 7,4, and the maxthreshold value
is greater than or equal to three times that of the minthreshold, then the mazthreshold and
doublemaxthreshold values are changed using Equations (5) and (6), respectively. As such,
the agl value increases accordingly to be stabilized at the T,,. On the other hand, if the
aql is greater than the T}, and less than or equal to the (capacity of buffer — minthreshold),
the mazthreshold and doublemaxthreshold values are changed using Equation (7). Thus,
they become equal and they prevent the doublemaxthreshold value to go over the buffer
capacity. Subsequently, the maxthreshold and doublemazthreshold values are increased to
push the agl toward the 7,4 and to alleviate the congestion at the router buffer by serving
more packets.

1
number of threshold

mazthreshold — (doublemazthreshold — minthreshold) x

()

1120 M. BAKLIZI, H. ABDEL-JABER, M. M. ABU-ALHAJ ET AL.

double M axmumthreshold — (doublemaxthreshold — minthreshold)

< ! (6)

number of threshold

1

mazithreshold + (doublemathreshold — minthreshold) x wamber of threshold

(7)

Lastly, if none of these cases occurs, the mazthreshold is set to the same values as those
in the RED algorithms [5] and the doublemaxthreshold is set to a similar value as that in
GRED [6].

In the final stage (Step 5) of the DGRED algorithm, the congestion is estimated and
packet dropping is implemented, as illustrated in Figure 7.

The congestion status is estimated based on the aql value. As such, if the aql value is
smaller than the minthreshold, no packet is dropped because no congestion is presented
at the DGRED router buffer. In addition, the D, is set to 0.0 and the C value is set
to —1. Hence, no packet is dropped. On the other hand, if the agl value is between the
manthreshold and maxthreshold values, the DGRED router buffer drops packets in a way
similar to that in GRED. Dropping packets is allocated with the increasing C' value by

Estimate Congestion and Packet Dropping

No Yes
if (aql <= Min T)
A 4
No < -
Yes if (Min_ T No Congestion I
<= aql &&aql=
Max_T)
if Max_ T
==aql & &aql= Yes
Dmax T)
. 4 Drop‘ every b4
| ati | Vi Equation 8
Equation 7 arriving packet quation

Idle_time = cwrrent_time I

Min_T= minthershold
Max_T= maxthershold
Dmax_T= doublemaxthershold

F1GURE 7. Estimate congestion and packet dropping

DYNAMIC STOCHASTIC EARLY DISCOVERY 1121

one and calculating the D, for the arriving packet using Equation (8).

Dax X (agl—minthreshold)
_ maxthreshold—niuthreshold
D, = (8)

(1 — C X Dinit)

On the other hand, if the value of the aqgl is between the mazthreshold and doublemaz-
threshold, the DGRED router buffer drops the packets in a way similar to that in GRED,
which involves initializing the C' value to 1 and calculating the D, for the arrival packet
using Equation (9). Finally, if the aql value is greater than or equal to the doublemaz-
threshold, the DGRED router buffer drops/marks every arriving packet with D, = 1 and
sets C' to zero. Subsequently, when the DGRED router buffer becomes empty, the idle_
time is set to current_ time.

1—Dmax) X (agl—mazthreshold)
mazxthreshold (9)

(1 —(C x Dznzt)

Drnax + (

D, =

4. Simulation. RED, GRED, AGRED, and the proposed DGRED are simulated based
on a discrete-time queue that uses slot as a unit of time [10,23]. Each slot may involve
packet arrival and/or departure. The compared algorithms are simulated by applying
them in a network consisting of a single router buffer node. Notably, both packet arrival
and departure are implemented in single mode. The scheduling mode is first-come-first-
served. The RED, GRED, AGRED and DGRED simulations are implemented in Java on
an i7 processor machine with 1.66GHz and 4GB RAM.

In the conducted simulation, the probability of the arriving packets at the router buffer
in a fixed time unit called slot is denoted by « [23]. The probability of packet departure
from the router buffer in a slot is denoted by . Packet arrivals can be modeled using a
Bernoulli process, whereas packet departures can be modeled using a geometrical distri-
bution. Using geometrical distribution, packet inter-arrival times and service times are
estimated to the values 1/a and 1/, respectively.

5. Evaluation Results. The performance of the proposed DGRED algorithm is com-
pared with those of GRED, AGRED, and RED. The performances of these algorithms
are measured ten times in ten runs, each taking different seeds as input to the random
number generator. This step removes possible bias in the output results and produces
confidence intervals for the performance measures. The performances of all AQM methods
are calculated after the system reaches a steady state.

For the parameter settings, RED, GRED, and AGRED are initiated using identical
parameters at most. To create congestion and non-congestion scenarios at the buffer,

TABLE 1. Parameter settings for GRED, AGRED and RED algorithms

Parameter GRED, AGRED RED
Probability of packet arrival 0.18-0.93 0.18-0.93
Probability of packet departure 0.5 0.5
Router buffer capacity 20 20
Quw 0.002 0.002
Do 0.1 0.1
Number of slots 2000000 2000000
manthreshold 3 3
maxthreshold 9 9
doublemaxthreshold s |-

1122 M. BAKLIZI, H. ABDEL-JABER, M. M. ABU-ALHAJ ET AL.

the probability of packet arrival was set to several values; each value tends to create a
congestion or non-congestion status. The buffer size room of 20 packets was used to
detect congestion at small buffer sizes. The total number of slots used in the experiments
was 2000000. This value allows the incorporation of accurate performance measures and
encapsulates a sufficient warm-up period. The warm-up period is terminated when the
system reaches a steady state. The minthreshold, mazthreshold, D., and qw values
are set to 3, 9, 0.1 and 0.002, respectively, as recommended in RED [5]. Finally, the
doublemazthreshold value is set to 18 as recommended in GRED [6]. Table 1 lists all the
utilized parameters.

The simulation results are measured using several performance metrics (e.g., mql, T,
D, Pp, and D,), which are discussed in the following subsection.

5.1. Mql, throughput, and delay. Figures 8-10 illustrate the output performances
of RED, GRED, AGRED, and DGRED using different probabilities of packet arrivals.
Specifically, Figure 8 illustrates the mgql versus the probability of packet arrival.

The mgql for all algorithms and the proposed DGRED algorithm is identical up to certain
value of the probability of packet arrival (e.g., 0.33). In such a low probability value, there
is at most a light congestion state because the probability of packet arrival is lower than
that of packet departure (a < B). In such case, all the compared algorithms sustain a
good and stable mgql. However, for a higher probability value, congestion is more likely
to exist at the router buffers. Accordingly, the mgql of the AQM algorithms increases
exponentially. The proposed DGRED, on the other hand, performs better than the AQM

Mean Queue Length vs. Propability of Packet Arrival
13
16.5
= 15
En 13.5
v 12
: 10.5 GRED
E 9 iy AGRED
o 75
g 6 =i RED
S 45 .
3 === DGRED
1.5
0 T T T T d
0.18 0.33 0.48 0.63 0.78 0.93
Propability of Packet Arrival
FI1GURE 8. mgql vs. probability of packet arrival
Average Queueing Delay vs. Probability of Packet Arrival
40
& 33
=
i 30
Z s = GRED
$ 23
0 e AGRED
15
i el RED
10
z . s DGRED
2 3
O T T T T 1
0.18 0.33 0.48 0.63 0.78 0.93
Propbability of Packet Arrival

FIGURE 9. D vs. probability of packet arrival

DYNAMIC STOCHASTIC EARLY DISCOVERY 1123

0.6 Throughput vs. Propability of Packet Arrival

%

s 0= M —4=—GRED

S 03 e AGRED

= 0_,3/ A
—==DGRED

0.1

il

thp

O T T T T 1
0.18 0.33 0.48 0.63 0.78 0.53

Probability of Packet Arrival

F1cUrE 10. T vs. probability of packet arrival

Packet Loss Probability vs. Probability of Packet Arrival
0.35

=
)

=
b
[

=
)

=
—
Lh

=
=

Packet Loss Probability

e
=]
Lh

B¢
P

0.18 0.33 0.48 0.63 0.78 0.93
Probability of Packet Arrival

FIGURE 11. Pp, vs. probability of packet arrival

algorithms in terms of mgql at such high probability values. This phenomenon occurs
mainly because DGRED drops fewer packets than RED, GRED, and AGRED. Figure 9
illustrates a comparison of the delays in all the algorithms.

Once again, the proposed DGRED performs better in terms of the average queuing
delay. However, AGRED also shows good performance in terms of delay. This result is
due to the fewer dropped packets in DGRED than those in RED, GRED, and AGRED.

Finally, Figure 10 illustrates the throughput under different packet arrival probabilities.
As illustrated, the throughput of the proposed and compared algorithms give similar T’
results, whether the probability of packet arrival is set to a value lower or higher than the
probability of packet departure value. Figure 10 indicates that a packet arrival probability
equal to a value lower than the packet departure probability results in the increase of T’
for the compared algorithms, as long as the packet arrival probability increases. On the
contrary, the T results for all compared algorithms are stabilized at the value of the packet
departure probability when there is congestion at the router buffer of the algorithms.

5.2. Packet loss and D,. The proposed DGRED algorithm is compared with the RED,
GRED, and AGRED algorithms in terms of P, and Dp in this subsection. The goal of the
conducted comparison is to show the quantity of packets dropping at the router buffer in
all compared algorithms. The performance measure results of P;, and Dp are computed
after the system reaches a steady state. The results of P, and Dp are obtained as before
by running the algorithm simulations ten times with various random seeds, then taking
the mean of the ten results. The performances of RED, GRED, ARED, and DGRED
algorithms in terms of P, and Dp are illustrated in Figures 11 and 12, respectively.

1124 M. BAKLIZI, H. ABDEL-JABER, M. M. ABU-ALHAJ ET AL.

Packet Dropping Probability vs. Probability of Packet arrival

0.45 >
o GRED

/
01 Y _AA
02 ;j:;é e 4 GRED

- ~ il DGRED
0.03 -

Packet Dropping Probability
[=]
a2
L

.33 0.48 0.63 0.78 0.53

Probability of Packet Arrival

FIGURE 12. D, vs. probability of packet arrival

In Figure 11, the proposed DGRED algorithm marginally produces the best and least
P;, performance when the probability of packet arrival is larger than the probability of
packet departure (existence of congestion). This performance is because the router buffer
in the DGRED algorithm overflows at an earlier time compared with those in the RED,
GRED, and AGRED algorithms. When the packet arrival probability is smaller than the
packet departure probability, all algorithms provide similar Py, results under either a light
congestion or no congestion situation.

Similarly, in Figure 12, the proposed DGRED algorithm evidently drops more packets
at the router buffer than the RED, GRED, and AGRED algorithms when the probability
of packet arrival is higher than the probability of packet departure. Similarly, the reason
for this result is because the router buffer in the DGRED algorithm overflows at an earlier
time compared with those in RED, GRED, and AGRED.

6. Applications of the DGRED Algorithm. The proposed DGRED algorithm can
be applied as a congestion control technique for wired and wireless networks. Specifically,
this algorithm can be applied at the router buffers of wired networks such as the Internet
to alleviate overflowing packet loss probability of the router buffers (see Figure 11, which
represents the results of the overflowing packet loss probability of the DGRED and other
AQM algorithms). As a result, better network performance is accomplished (see Figures
8-11). In addition, applying the DGRED on wireless networks such as base stations of
cellular networks can manage congestion by losing fewer packets. This process leads to
enhanced network performance.

7. Conclusions. The current paper proposed a new AQM algorithm based on the GRED
called the DGRED, which identifies congestion at router buffers at an early stage, right
before the router buffer overflows. The proposed DGRED aims to stabilize the aql between
the minthreshold and maxthreshold by updating the maxthreshold and doublemazthreshold
positions at the router buffer. This decrease or increase in theaql helps stabilize the aql
at the Taql~

DGRED uses an adaptive mazthreshold and doublemaxthreshold positions aimed to keep
the agl between the minthreshold and maxzthreshold at a particular level (T,,), which may
lead to fewer packet losses.

The DGRED technique is compared with the GRED, RED, and AGRED algorithms
with regard to mql, T', D, Pr, and D,, to identify which method offers better performance
in terms of packet arrival probability parameters.

DYNAMIC STOCHASTIC EARLY DISCOVERY 1125

e The RED, GRED, AGRED, and DGRED algorithms provide similar performance
measure results (mql, T, D, P, and D,) when the probability of packet arrival is set
to a value lower than the probability of packet departure or in the event of light or no
congestion.

e The DGRED algorithm marginally offers better mql and D results than the RED,
GRED, and AGRED algorithms when the values of the probability of packet arrival are
greater than the values of packet departure probability or in the event of heavy congestion.
In addition, the RED, GRED, AGRED, and DGRED algorithms obtain similar 7" results
with such values of packet arrival probability.

e The DGRED algorithm marginally outperforms the RED, GRED, and AGRED algo-
rithms for P, when the value of the probability of packet arrival is larger than the value
of the probability of packet departure or in the event of heavy congestion. Moreover,
RED, GRED, and AGRED drop fewer packets (Dp) at their router buffers than DGRED
at such values of packet arrival probability.

REFERENCES

[1] G. Thiruchelvi and J. Raja, A survey on active queue management mechanisms, IJCSNS Interna-
tional Journal of Computer Science and Network Security, vol.8, 2008.

[2] M. Welzl, Network congestion control, Proc. of Managing Internet Traffic, Chichester, UK, 2005.

3] A. S. Tanenbaum, Computer Networks, 4th Edition, Prentice Hall Ptr, 2002.

[4] D. Lin and R. Morris, Dynamics of random early detection, Proc. of ACM SIGCOMM, New York,

NY, USA, pp.127-137, 1997.

[5] S. Floyd and V. Jacobson, Random early detection gateways for congestion avoidance, IEEE/ACM
Transactions on Networking, pp.397-413, 1993.

[6] S. Floyd, Recommendations on Using the Gentle Variant of RED, http://www.aciri.org/floyd
/red/gentle.html, 2000.

[7] M. Baklizi et al., Performance assessment of AGRED, RED and GRED congestion control algo-
rithms, Information Technology Journal, vol.11, pp.255-261, 2012.

[8] J. Ababneh et al., Derivation of three queue nodes discrete-time analytical model based on DRED
algorithm, Proc. of the 7th International Conference on Information Technology: New Generations,
pp-885-890, 2010.

[9] H. Abdel-jaber et al., Traffic management for the gentle random early detection using discrete-
time queueing, Proc. of International Business Information Management Conference, Marrakech,
Morocco, pp.289-298, 2008.

[10] H. Abdel-Jaber et al., Performance evaluation for DRED discrete-time queueing network analytical
model, Journal of Network and Computer Applications, vol.31, pp.750-770, 2008.

[11] H. Abdel-jaber et al., Modelling BLUE active queue management using discrete-time queue, Proc.
of 2007 International Conference of Information Security and Internet Engineering, London, UK,
pp.568-573, 2007.

[12] A. Moarefianpour and V. J. Majd, Input-to-state stability in congestion control problem of computer
networks with nonlinear links, International Journal of Innovative Computing, Information and
Control, vol.5, no.8, pp.2091-2106, 2009.

[13] X. Chen, T. Liu and J. Zhao, A logic-based switching control approach to active queue management
for transmission control protocol, International Journal of Innovative Computing, Information and
Control, vol.4, no.7, pp.1811-1820, 2008.

[14] C. Brandauer et al., Comparison of tail drop and active queue management performance for bulk-
data and web-like Internet, Proc. of IEEE ISCC 2001, pp.122-129, 2001.

[15] R. Stanojevic et al., Adaptive tuning of drop-tail buffers for reducing queueing delays, IEEE, Com-
munications Letters, vol.10, pp.570-572, 2006.

[16] A. Bitorika et al., A comparative study of active queue management schemes, Proc. of IEEE ICC
2004, Congestion Control Under Dynamic Weather Condition, Ireland, 2004.

[17] S. Ryu, Active Queue Management (AQM) Based Internet Congestion Control, Ph.D. Thesis, Uni-
versity at Buffalo Patent, 2002.

[18] J. H. Salim et al., Performance evaluation of explicit congestion notification (ECN) in IP networks,
RFC 2884, 2000.

1126 M. BAKLIZI, H. ABDEL-JABER, M. M. ABU-ALHAJ ET AL.

[19] H.-Y. Chu, K.-H. Tsai and W.-J. Chang, Fuzzy control of active queue management routers for trans-
mission control protocol networks via time-delay affine Takagi-Sugeno fuzzy models, International
Journal of Innovative Computing, Information and Control, vol.4, no.2, pp.291-312, 2008.

[20] F. Wu-chang et al., The blue active queue management algorithms, IEEE/ACM Transactions on
Networking, vol.10, pp.513-528, 2002.

[21] S. Floyd et al., Adaptive RED: An algorithm for increasing the robustness of RED’s active queue
management, ATET Center for Internet Research, 2001.

[22] J. Aweya et al., A control theoretic approach to active queue management, Computer Networks,
vol.36, pp.203-235, 2001.

[23] M. E. Woodward, Communication and Computer Networks: Modelling with Discrete-Time Queues,
IEEE Computer Society Press, Los Alamitos, CA, USA, 1994.

